Skip Navigation Links

Project Information

ENGINEERING MICROBIAL CO-CULTURES FOR COMPLEX NATURAL PRODUCT BIOSYNTHESIS

Agency:
NSF

National Science Foundation

Project Number:
1706058
Contact PI / Project Leader:
ZHANG, HAORAN
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
Many naturally-occurring pharmaceutical molecules (for example: antibiotics, anti-cancer drugs) are the result of a long sequence of reactions that add, piece by piece, different subunits to the growing molecule, in a fashion similar to an industrial assembly line. When production occurs in a single organism, it places a large burden on the organism to provide all of the raw materials and energy needed to complete construction. This project will investigate a strategy that creates organisms capable of efficiently producing a particular subunit of the larger drug molecule, "subcontracts" production of subunits to multiple organisms, then brings the subunits together to create the final product. If successful, this could dramatically improve the efficiency of large molecule drug production, and could also increase the speed of identification of more effective drug molecules. This project will also expand the development of a STEM-trained workforce through targeted outreach and engagement of high school and college students from under-represented populations in the research project.This proposed study aims to adapt engineered E. coli strains to constitute co-cultures for production of three representative natural products with characteristically long and complicated biosynthetic pathways. Each biosynthetic pathway is divided into two independent modules, each of which is accommodated in a different, specialized E. coli strain. Such designed pathway modularization allows for reduction of metabolic burden and improvement of biosynthetic performance of the co-culture strains, as each strain is only responsible for one portion of the biosynthesis. The involved strains will also be metabolically engineered individually to meet the needs of the designated pathway enzymes and maximize their bioconversion capabilities. Moreover, the biosynthetic strength of the individual pathway modules will be balanced for bioproduction optimization through manipulation of the relative ratio of the co-culture populations. The microbial systems will be scaled up to investigate population stability and bioproduction behavior under high cell density conditions. This project offers outstanding potential to design and engineer the production of complex molecules. The fundamental knowledge gained regarding the dynamic regulation of population ratios and metabolic activity in mixed populations will provide insight into the behavior of natural microbial mixed populations, which will have implications for a wide variety of industrial and environmentally-important processes.
Project Terms:
Anabolism; Antibiotics; Antineoplastic Agents; Behavior; Cell Density; Characteristics; Coculture Techniques; Complex; design; Development; drug production; Engineering; enzyme pathway; high school; improved; Individual; Industrialization; insight; Knowledge; Metabolic; metabolic engineering; microbial; Names; Natural Products; Organism; outreach; Pathway interactions; Performance; Pharmaceutical Preparations; Pharmacologic Substance; Population; Process; Production; Reaction; Regulation; Research Project Grants; scale up; Speed; System; Training; Underrepresented Students; university student

Details

Contact PI / Project Leader Information:
Name:  ZHANG, HAORAN
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2017
Award Notice Date: 25-Jun-2017
DUNS Number: 001912864
Project Start Date: 01-Sep-2017
Budget Start Date:
CFDA Code: 47.041
Project End Date: 31-Aug-2020
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2017:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2017 NSF

National Science Foundation

$299,080

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top