Skip Navigation Links

Project Information

COLLABORATIVE RESEARCH: RATIONAL DESIGN AND ENGINEERING OF ATOMICALLY THIN INTERFACES FOR ELECTRONIC DEVICES

Agency:
NSF

National Science Foundation

Project Number:
1727531
Contact PI / Project Leader:
CHHOWALLA, MANISH
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
The contact between metals and semiconductors is the foundation of modern day electronics. The high performance at relatively low energy cost in today's field effect transistors is achieved by decades long optimization of electrical contacts that has allowed the miniaturization of the device down to nanoscale dimensions. The search for new materials and devices to continue the development of advanced electronic has focused on 2-dimensional (2D) materials such as MoS2. 2D semiconductors that are naturally atomically thin can in principle provide higher performance. While the materials can provide advantages, their implementation is limited by the lack of a useful strategy to make electrical contact to the device. This grant looks to the fundamental nature of these contacts. The combined computational and experimental approach will seek new contact materials and structures to overcome this technological barrier. New contact strategies will be discovered and demonstrated leading to advances in the use of these new materials. Undergraduates will be engaged in the research activities drawing upon and developing underrepresented students into the work. The research seeks to develop a fundamental understanding of atomically thin interfaces formed between two dimensional (2D) materials with disparate properties. The lateral integration of 2D materials is a unique scientific problem that has not been systematically investigated. Novel atomic structures will be identified that are due to deformation induced by interfacial stress as well as the presence of new types of defects when two materials are 'stitched' together. The work examines the role of defects and the strain induced at the structural interface using multi-scale theoretical models, detailed structural characterization, and correlation of mechanics of the interface with electronic transport in field effect transistors. An iterative design approach will be developed that utilizes theoretical models to predict desired properties, experimentally realize hetero-interfaces of 2D materials, and characterize their atomic structure. The experimental work will provide input parameters for refinement of calculations while theoretical models will down select important combinations of 2D materials. This grant develops new theoretical and experimental methods for designing atomically thin interfaces with key 2D materials and their implementation as high performance electrical contacts for electronic systems. The materials selection knowledge for electrical contacts for 2D semiconductors will enable the next generation of high performance electronics that dissipate less heat leading to more energy efficient devices and do not require sophisticated thermal management strategies. The work incorporates undergraduates into the research activities drawing from underrepresented groups.
Project Terms:
Advanced Development; cost; Defect; design; Devices; Dimensions; Electronics; engineering design; Foundations; Grant; interfacial; iterative design; Knowledge; Lateral; Mechanics; Metals; Methods; Miniaturization; Modernization; Names; nanoscale; Nature; next generation; novel; Performance; Property; Research; Research Activity; Role; Semiconductors; Stress; Structure; System; Theoretical model; Thinness; Transistors; two-dimensional; Underrepresented Groups; Underrepresented Students; Work

Details

Contact PI / Project Leader Information:
Name:  CHHOWALLA, MANISH
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2017
Award Notice Date: 06-Jul-2017
DUNS Number: 001912864
Project Start Date: 01-Aug-2017
Budget Start Date:
CFDA Code: 47.041
Project End Date: 31-Jul-2020
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2017:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2017 NSF

National Science Foundation

$340,094

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top