Skip Navigation Links

Use of Internet Explorer for eRA Modules to be Phased Out by July 19, 2021

eRA is phasing out the use of the Internet Explorer browser for eRA modules effective July 19, 2021. For tips and tricks on troubleshooting browser configuration issues, please go here: Tips & Tricks for Fixing Browser Configuration Issues When Using eRA Modules.

Project Information

FORMATION OF SINGULARITIES IN RELATIVISTIC THEORIES OF ELECTROMAGNETISM

Agency:
NSF

National Science Foundation

Project Number:
0807705
Contact PI / Project Leader:
KIESSLING, MICHAEL
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
This research project studies the question of singularity formation in nonlinear dynamical theories of relativistic electromagnetic fields, both at the classical and the quantum level.

The classical part is concerned with two main problems: (1) Analysis of the well-known relativistic Vlasov-Maxwell equations, which had been conjectured to be globally well-posed as a Cauchy problem with suitable finite-energy classical data. This project will rigorously analyze a recently-developed scenario for a counterexample exhibiting finite-time collapse for a family of solutions. (2) Analysis of the nonlinear Maxwell-Born-Infeld equations for electromagnetic fields in the absence of point charges. This project will investigate recently-discovered spatially periodic plane wave solutions that exhibit finite-time blow-up to determine whether the corresponding set of Cauchy data is part of a generic bad set.

The quantum part of the research project concerns solutions of the Maxwell-Born-Infeld field equations with point defects that represent particles. The charged particles move according to a quantum velocity field obtained from a many body Dirac formalism coupled to generic electromagnetic fields. This project will study whether the Dirac Hamiltonian for the system can become unbounded below.

This project addresses fundamental issues in the theory of electromagnetism, which is central to modern science and engineering. The study of singularity formation has long been at the forefront of research in general relativity and in fluid dynamics. Recent discoveries suggest that singularities may also pose a major conceptual challenge in the nonlinear electromagnetic models that have been proposed as candidates for a consistent formulation of an electromagnetic theory without artificial regularizers. The principal investigator recently developed a consistent formulation of electromagnetic theory, incorporating intrinsic spin of particles, that is consistent at both classical and quantum levels. The current project investigates possible singularity formation in this theory. Another part of this work examines finite-time collapse in the relativistic Vlasov-Maxwell model. Such collapse would provide a novel mechanism for the formation of very small celestial bodies whose gravitational self-attraction is too weak to aid in their formation. This project aims to establish that possibility; the results could have a major impact on theories of planetary system formation.
Project Terms:
Address; Charge; Coupled; Data; Defect; Drug Formulations; Electromagnetic Fields; Electromagnetics; electromagnetism; Engineering; Equation; Exhibits; Family; Generic Drugs; Liquid substance; Modeling; novel; particle; Principal Investigator; quantum; Research; Research Project Grants; Science; Solutions; System; theories; Time; Work

Details

Contact PI / Project Leader Information:
Name:  KIESSLING, MICHAEL
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  NEW BRUNSWICK    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2008
Award Notice Date: 20-Jun-2008
DUNS Number: 001912864
Project Start Date: 01-Jul-2008
Budget Start Date:
CFDA Code: 47.049
Project End Date: 30-Jun-2012
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2008:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2008 NSF

National Science Foundation

$348,695

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top