Skip Navigation Links

Project Information

ELECTRON CORRELATIONS AND THE PROPERTIES OF METALS AND INSULATORS

Agency:
NSF

National Science Foundation

Project Number:
0801343
Contact PI / Project Leader:
VANDERBILT, DAVID H
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
TECHNICAL SUMMARY:
This award supports research and education in developing and improving methods for predicting the electronic and geometrical structure of both bulk materials and molecular complexes. Research extends Density functional theory (DFT) which has been a successful method for much of such matter. The primary extension improves the treatment of electron correlations at a distance which lead to the van der Waals interaction. This enhancement expands the use of DFT beyond dense condensed matter and isolated molecules, which can already be treated accurately, and provides capabilities for improved treatment of sparse matter, including biological matter, as well as van der Waals molecular complexes. The research expands on previous enhancements embodied in the non-empirical van der Waals density functional developed by this principal investigator and others. The work being undertaken widens the applicability of the van der Waals density functional to a broad range of system types, and increases its accuracy. Key applications will be addressed in the course of the research that cannot be handled by other methods and which demonstrate the efficacy of the enhancements. The result of this development will include a robust computer codes to be distributed, thus putting the method within easy access of the greater community. The goal of the work is to increase our limited understanding on how the van der Waals interaction merges with the short-range phenomena associated with density overlap, especially in systems too large to be feasibly treated with wave-function methods. Accordingly this allows treatment of of much larger systems than possible at present and increases our understanding of how certain large systems function.

The effort undertaken has broader impacts with both scientific and educational consequences. Though the computational effectiveness of Density Functional Theory has already had a broad impact on materials science and engineering, the work proposed here will extend the usefulness of DFT to a wide range of previously impossible systems which are prevalent and important in many different fields. Early examples include the first calculation from first principles that predicts the twist of DNA. There will be capabilities added that will help with complex materials of the sort needed to study the the hydrogen storage problem for the possible future hydrogen fueled vehicles. Included in the plans are a study of molecular configurations that are relevant to understanding drug action and drug design. This work is shared widely in the scientific literature and conferences and the computer codes developed are shared.

NONTECHNICAL SUMMARY:
This award supports research and education in developing and improving methods for predicting the electronic and geometrical structure of both bulk matter and individual molecules. Research extends Density functional theory which has been a successful method for many types of materials. The primary extension improves the treatment of forces between molecules that are separated by modest to large distances. This enhancement provides capabilities for improved treatment of sparse matter, including biological matter, as well as weak molecular complexes. The work being undertaken widens the applicability of the theoretical and computational methods and increases accuracy. Key applications will be addressed in the course of the research that cannot be handled by other methods and which demonstrate the efficacy of the enhancements. The result of this development will include a robust computer codes to be distributed, thus putting the method within easy access of the greater community. This allows treatment of of much larger systems than possible at present and increases our understanding of how certain large systems function.

The effort undertaken has broader impacts with both scientific and educational consequences. Though the computational effectiveness of Density Functional Theory has already had a broad impact on materials science and engineering, the work proposed here will extend the usefulness of the theory to a wide range of previously impossible systems which are prevalent and important in many different fields. Early examples include the first calculation that predicts the twist of DNA. There will be capabilities added that will help with complex materials of the sort needed to study the the hydrogen storage problem for the possible future hydrogen fueled vehicles. Included in the plans are a study of molecular configurations that are relevant to understanding drug action and drug design. This work is shared widely in the scientific literature and conferences and the computer programs are made freely available.
Project Terms:
Address; Award; Biological; Communities; Complex; computer code; Computing Methodologies; density; Development; DNA; Drug Design; Drug effect disorder; Education; Effectiveness; Electronics; Electrons; Engineering; Future; Goals; Hydrogen; improved; Individual; Lead; Literature; Metals; Methods; Molecular; Molecular Conformation; Principal Investigator; Property; Research; Research Support; Science; Sorting - Cell Movement; Structure; symposium; System; theories; Work

Details

Contact PI / Project Leader Information:
Name:  VANDERBILT, DAVID H
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  NEW BRUNSWICK    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2008
Award Notice Date: 08-Sep-2008
DUNS Number: 001912864
Project Start Date: 15-Sep-2008
Budget Start Date:
CFDA Code: 47.049
Project End Date: 31-Aug-2012
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2008:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2008 NSF

National Science Foundation

$390,000

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top