Skip Navigation Links

Project Information

US IRELAND RESEARCH AND DEVELOPMENT PARTNERSHIP: SPIN AND VALLEY INTERACTIONS IN INTRINSIC AND MAGNETIC TWO DIMENSIONAL TRANSITION METAL DICHALCOGENIDES FOR NOVEL DEVICES

Agency:
NSF

National Science Foundation

Project Number:
1608389
Contact PI / Project Leader:
CHHOWALLA, MANISH
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
Two dimensional transition metal dichalcogenides (2D TMDs) are the ideal platform for exploration of fundamental spin and valley interactions that will form the foundation of spintronic and valleytronic devices. In this project, researchers from the United States, Republic of Ireland (ROI), and Northern Ireland (NI) propose to study fundamental properties, such as phase and spin coherences, inter-valley scattering, and magnetism in intrinsic and magnetically doped 2D TMDs. Each PI will be supported by their respective funding agencies through the US Ireland R & D Partnership Program. The Research Team is interdisciplinary with complementary expertise. The NI group will carry out multi-scale modeling using state-of-the-art theoretical methods to predict new properties as well as provide fundamental understanding of the experimental work. The ROI group will provide multi-scale characterization and develop new scanning transmission electron microscopy methods to simultaneously obtain information about atomic and magnetic structures. The US group will investigate new synthesis methods to obtain magnetic 2D materials and perform quantum transport measurements to elucidate fundamental spin and inter-valley scattering mechanisms. The collaborative research will lead to realization of synergies through formation of an interdisciplinary team who will work on spin and valley physics in 2D materials to enable exciting scientific discoveries. The educational and training activities of the proposed project will complement the scientific impact of the proposed project. The graduate students from the US, Ireland, and Northern Ireland will benefit from the scientific and educational components of the program. This collaboration will result in developing highly engaged, globally networked graduate students with interdisciplinary knowledge experienced in international and national laboratory environments. The students will benefit from international exchanges by developing new skills beyond the expertise of their core doctoral thesis topics. Additionally, focused outreach activities will involve engaging high school students as well as middle and high school teachers to be familiarized with materials science as well as engaging public by organizing laboratory tours, designing hands-on demonstrations, and issuing timely press releases. The main goal of this proposal is to provide new insights in: (i) fundamental interactions of spin and valley with magnetic impurities in the very dilute (i.e. intrinsic) or weak magnetic ordering regime; and (ii) ferromagnetism in 2D semiconductors in the high magnetic ordering regime and its influence on spin polarization and coherence. The new knowledge obtained from this project will be complementary in realizing future spintronics and valleytronics devices based on 2D TMDs. In addition, electrical doping remains an unresolved question in 2D semiconductors and it is expected the outcome of this research will address key fundamental questions regarding thermodynamic concentration limit and influence of impurities on electronic and magnetic properties. These properties will be investigated by quantum transport and Hall Effect measurements to obtain information about weak localization for the non-magnetic materials. Information about spin-polarized transport in magnetic samples will be obtained using magneto-resistance measurements with in-plane magnetic fields. It is expected that the research will generate the foundation of new fundamental knowledge and investigate the feasibility of experimentally realizing 2D magnetic TMDs for fabrication of spintronic and valleytronic devices. This US-Ireland partnership will provide a framework to collaborate theoretically and experimentally for realizing new 2D materials properties and thier potential synergies for device applications.
Project Terms:
Address; Arts; base; Collaborations; Complement; design; Devices; Electronics; Environment; experience; ferromagnetism; Foundations; Funding Agency; Future; Goals; graduate student; Hand; High School Faculty; High School Student; insight; International; Ireland; Knowledge; Laboratories; Lead; magnetic field; Magnetism; materials science; Measurement; Methods; multi-scale modeling; Northern Ireland; novel; Outcomes Research; outreach; Phase; Physics; Press Releases; programs; Property; quantum; Research; research and development; Research Personnel; Resistance; Sampling; Scanning; Semiconductors; skills; Structure; Students; Thermodynamics; Training Activity; Transition Elements; Transmission Electron Microscopy; two-dimensional; United States; Work

Details

Contact PI / Project Leader Information:
Name:  CHHOWALLA, MANISH
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2016
Award Notice Date: 29-Jul-2016
DUNS Number: 001912864
Project Start Date: 15-Aug-2016
Budget Start Date:
CFDA Code: 47.041
Project End Date: 31-Jul-2019
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2016:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2016 NSF

National Science Foundation

$360,000

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top