Skip Navigation Links

Project Information

EFRI NEWLAW: DYNAMIC ELASTIC MEDIA: PASSIVE AND ACTIVE NON-RECIPROCAL THEORY, EXPERIMENT AND DESIGN

Agency:
NSF

National Science Foundation

Project Number:
1641078
Contact PI / Project Leader:
NORRIS, ANDREW N
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
Two of the most fundamental concepts in wave propagation and signal transmission are the closely related principles of reciprocity and time-reversal symmetry. Reciprocity requires that a wave traveling in one direction can just as well travel in the opposite direction, while time-reversal symmetry provides the same relationship when time is reversed. Recent advances in engineering have shown that either or both principles can be violated under special conditions, for instance in the presence of moving fluid and solid elements. This award supports fundamental research to demonstrate novel methods for realizing non-reciprocal behavior through the design of heterogeneous acoustic, elastic, and electro-mechanical systems. Technology that violates these fundamental rules opens the possibility of changing the standard operating procedures for measuring and utilizing acoustic and elastic waves. The work pairs these new concepts with robust materials design methodologies and additive manufacturing expertise to help redirect the nation?s technological advances in acoustics, structural vibration, ultrasonic inspection, seismic protection, and biomedical imaging. Research efforts supported in this award specifically provide opportunities for underrepresented undergraduate students to participate in knowledge acquisition and exploration via multidisciplinary projects conducted in parallel at the collaborating institutions. One approach to breaking time-reversal symmetry in linear systems to be considered is based on the dynamic coupling of momentum and strain using excitation on fast and slow time scales for acoustic and elastic media with spatially asymmetric microstructure. Oscillations from a pump excitation provide a quasi-static momentum bias that enables non-reciprocal signal propagation. Other routes to achieving non-reciprocal response include elastically nonlinear up-conversion from the drive frequency to higher harmonics. Optimal damping and absorption in elastic waveguides, using an unexplored powerful relation between exceptional points and damping, will be examined. Other areas to be investigated include active control via shunted piezoelectric elements and hybrid time-varying circuits. Materials design is at the center of the DEPARTED project with a view towards efficient design space exploration and employing state-of-the art additive manufacturing techniques to develop optimal microstructural topology of these structures.
Project Terms:
absorption; Acoustics; active control; Area; Arts; Award; base; Behavior; bioimaging; Coupling; design; Elements; Engineering; Frequencies; fundamental research; Hybrids; Institution; Knowledge acquisition; Liquid substance; Measures; Mechanics; Methodology; Methods; multidisciplinary; novel; Procedures; Pump; Research; research study; response; Route; Signal Transduction; Solid; Space Explorations; Structure; System; Techniques; Technology; theories; Time; transmission process; Travel; Ultrasonics; undergraduate student; vibration; Work

Details

Contact PI / Project Leader Information:
Name:  NORRIS, ANDREW N
Other PI Information:
HUANG, GUOLIANG; HABERMAN, MICHAEL; SEEPERSAD, CAROLYN
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2016
Award Notice Date: 03-Aug-2016
DUNS Number: 001912864
Project Start Date: 15-Aug-2016
Budget Start Date:
CFDA Code: 47.041
Project End Date: 31-Jul-2020
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2016:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2016 NSF

National Science Foundation

$2,000,000

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top