Skip Navigation Links

Project Information

CHEMISORBED AROMATIC HYDROCARBONS ON COINAGE METAL SURFACES:FORMATION AND DYNAMICS

Agency:
NSF

National Science Foundation

Project Number:
1565673
Contact PI / Project Leader:
HINCH, BARBARA J
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
This project is funded by the Chemical Structure, Dynamics and Mechanisms of the Chemistry division. The project investigates the properties of charged organic molecules (organic ions) on metal surfaces. The fundamental studies performed in the group of Professor B.J Hinch at Rutgers University, are aimed at understanding how ionic molecules can be strongly bound to metal surfaces, and yet also display high mobilities on the surfaces. Understanding mechanisms behind the motion of molecules along surfaces is of significance to lubrication processes, as well as to the formation of ordered molecular films that can be employed in molecular electronic devices. International and interdisciplinary collaborations are also underway to develop respectively theoretical understanding and electronic characterization of the interfaces. The program realizes ionically-bound planar aromatic chemisorbates, on electronically significant Cu, Ag and Au surfaces, through exposures of volatile non-aromatic molecular precursors. Thermal stability and hydrogenation processes are studied with temperature programmed desorption. Diffusivities, mutual interaction strengths, correlations of dynamic motion, lateral ordering, are explored with helium atom scattering. DFT calculations performed in collaboration with Prof. Steve Jenkins, (Cambridge, UK.) elucidate the potential energy surfaces of the mobile species and anticipated electronic structure. Valence shell and core level spectra studies are undertaken in collaboration with Prof. Robert Bartynski, (Physics Dept., Rutgers University.) A new ionizer design for time-of-flight He energy analysis is being developed. This technology has applications in all time-resolved mass spectroscopies. The experiment design, measurements, local and international collaborative projects, and instrumental development present challenging training experiences at all levels of study. Broader outreach programs include involvement of high school students in applications of new instrumentation, and development of future collaborative projects with emerging academic research programs.
Project Terms:
Aromatic Hydrocarbons; Binding; Charge; Chemical Structure; Chemistry; Collaborations; design; Development; electronic structure; Electronics; experience; Funding; Future; Helium; High School Student; Hydrogenation; instrumentation; interdisciplinary collaboration; International; Ions; Lateral; Lubrication; Mass Spectrum Analysis; Measurement; Metals; Molecular; molecular film; Motion; outreach program; Physics; Potential Energy; Process; professor; programs; Property; Research; research study; Surface; Technology; Temperature; Time; Training; Universities

Details

Contact PI / Project Leader Information:
Name:  HINCH, BARBARA J
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2016
Award Notice Date: 22-Aug-2016
DUNS Number: 001912864
Project Start Date: 01-Sep-2016
Budget Start Date:
CFDA Code: 47.049
Project End Date: 31-Aug-2019
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2016:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2016 NSF

National Science Foundation

$488,800

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top