Skip Navigation Links

Project Information

CAREER:MOLECULAR LEVEL INTERROGATIONS OF METAL-ORGANIC FRAMEWORKS USING ELECTRONIC AND STRUCTURALLY SENSITIVE SPECTROSCOPY METHODS

Agency:
NSF

National Science Foundation

Project Number:
1455127
Contact PI / Project Leader:
LOCKARD, JENNY V
Awardee Organization:
RUTGERS THE STATE UNIV OF NJ NEWARK

Description

Abstract Text:
Non-Technical Description
The research activities in this project involve the investigation of an emerging class of porous materials called metal-organic frameworks that have potential applications ranging from carbon sequestration to industrial chemical production to solar energy conversion. While significant progress has been made in developing novel frameworks for these uses, basic insight on exactly how these materials work is often sorely lacking. The research activities in this project meet this need by targeting a fundamental understanding of the processes behind the applications of these materials. The outcome of this work is crucial for facilitating the rational design of the next generation of these materials with improved performances and, therefore, has far reaching implications for a broad range of energy and environmental sustainability applications. Furthermore, as part of a broader mission to integrate research and education, the educational component of the project will provide not only hands-on research experiences for high school science teachers in the Newark region, but a mechanism for translating those experiences into meaningful high school science curricula that meet the specific needs of the students in this community. This outreach initiative stands to have a large impact on the students in these schools since it targets the educators that teach them.

Technical Description
Metal organic frameworks are hybrid materials that are composed of metal ions or clusters connected by organic molecules to form crystalline microporous networks. These materials have great potential for adsorption-based functions since their intrinsic porosity and tunable architecture allows bandgap manipulation, gas/substrate selectivity and the incorporation of other synergistic characteristics. Synthetic strides in developing new frameworks with these properties have, however, far outpaced the progress in advancing the fundamental understanding of their adsorption-based processes, reaction mechanisms and photoactive properties. Consequently, there are often significant ambiguities in the structure/function relationships that give rise to their utility. This research aims to make those connections by producing molecular level understanding of metal organic framework behavior. The project focuses on framework systems with energy and environmental sustainability implications. This broad underlying theme allows the exploration of several exploitable properties ranging from gas adsorption to heterogeneous catalysis to light harvesting and photocatalysis. The objectives in studying these systems are to expose pertinent electronic and molecular level structural changes associated with the observed properties and to use these insights to help elucidate the mechanisms behind their functionalities. To accomplish these goals, a targeted set of vibrational, optical, and X-ray spectroscopy methods are employed for in situ, and in some cases time-resolved, studies of these systems to garner real time information on the important host-guest interactions and structural changes.
Project Terms:
Adsorption; Architecture; base; Behavior; Carbon; career; Catalysis; Characteristics; Chemicals; Communities; design; Education; Educational Curriculum; Educational process of instructing; Electronics; experience; Gases; Goals; Hand; Harvest; high school; Hybrids; improved; In Situ; insight; Investigation; Ions; Light; meetings; Metals; Methods; Mission; Molecular; next generation; novel; Optics; Outcome; outreach; Performance; Porosity; Process; Production; Property; Reaction; Research; Research Activity; Schools; Science; Solar Energy; Spectrum Analysis; Structure-Activity Relationship; Students; System; teacher; Time; Translating; Work; X ray spectroscopy

Details

Contact PI / Project Leader Information:
Name:  LOCKARD, JENNY V
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE STATE UNIV OF NJ NEWARK
City:  NEWARK    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  10
Other Information:
Fiscal Year: 2015
Award Notice Date: 01-Apr-2015
DUNS Number: 130029205
Project Start Date: 01-May-2015
Budget Start Date:
CFDA Code: 47.049
Project End Date: 30-Apr-2020
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2015:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2015 NSF

National Science Foundation

$125,000

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top