Skip Navigation Links

Project Information

POLYNOMIAL INCLUSIONS: OPEN PROBLEMS AND POTENTIAL APPLICATIONS

Agency:
NSF

National Science Foundation

Project Number:
1410273
Contact PI / Project Leader:
LIU, LIPING
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
The goal of this project is to study a new geometric concept, polynomial inclusions, and their applications. It was first discovered by Newton that an interior point in a hollow ellipsoid feels no gravitational force, and that for a filled ellipsoid the gravity inside is a quadratic function of the position. Polynomial inclusions are a generalization of ellipsoids in terms of Newtonian potential. An interior point in a hollow polynomial inclusion feels a gravitational force that is a polynomial of the position. Polynomial inclusions have proven to be useful for many modeling and design problems. Specifically, the following applications pertaining to polynomial inclusions will be investigated: (i) predictive models for design of synthetic complex materials, (ii) optimal structures for fusion reactors and minimum field concentration, and (iii) inverse source problem for medical and geological imaging. This research project will be integrated with educational and outreach activities such as one-to-one mentoring, educational module development, training graduate students, and fostering interdisciplinary collaborations.

The Newtonian potential induced by a polynomial inclusion of degree k is precisely a polynomial of degree k inside the body. The interest in polynomial inclusions arises from that partial differential equations admit closed-form simple solutions for polynomial inclusions as for ellipsoids. The following fundamental technical problems concerning polynomial inclusions will be addressed in the project: (i) proving the existence and uniqueness of polynomial inclusions, (ii) numerically computing polynomial inclusions, (iii) explicit parametrization of polynomial inclusions and (iv) employing polynomial inclusions to solve aforementioned engineering problems. The outcomes of this project may have an impact on the classic Hilbert's sixteenth problem as well as industrial problems ranging from structural engineering, fusion designs and to imaging. The project will also strengthen the connection between the Department of Mathematics and the Department of Mechanical Aerospace Engineering at Rutgers University by means of recruiting students of diverse backgrounds into the research team.
Project Terms:
Address; Aerospace Engineering; Complex; design; Development; Differential Equation; Engineering; Force of Gravity; Fostering; Goals; graduate student; Image; interdisciplinary collaboration; interest; Learning Module; Mathematics; Mechanics; Medical; Mentors; model design; Outcome; outreach; Positioning Attribute; predictive modeling; Recruitment Activity; Research; Research Project Grants; Solutions; Source; Structure; Students; Training; Universities

Details

Contact PI / Project Leader Information:
Name:  LIU, LIPING
Other PI Information:
Not Applicable
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  NEW BRUNSWICK    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2014
Award Notice Date: 22-Aug-2014
DUNS Number: 001912864
Project Start Date: 01-Sep-2014
Budget Start Date:
CFDA Code: 47.049
Project End Date: 31-Aug-2017
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2014:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2014 NSF

National Science Foundation

$190,980

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top