Skip Navigation Links

Use of Internet Explorer for eRA Modules to be Phased Out by July 19, 2021

eRA is phasing out the use of the Internet Explorer browser for eRA modules effective July 19, 2021. For tips and tricks on troubleshooting browser configuration issues, please go here: Tips & Tricks for Fixing Browser Configuration Issues When Using eRA Modules.

Project Information

INVESTIGATING THE FORCES THAT TRANSDUCE MECHANICAL CUES TO BRANCHING NEURONS

Agency:
NSF

National Science Foundation

Project Number:
1825433
Contact PI / Project Leader:
BOUSTANY, NADA N
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
Neurons, the basic cells of nerves, are one of the most difficult to regenerate after disease or injury. If advances are going to be made in engineering systems that support nerve regrowth and regeneration, it is imperative that we develop a full understanding of how these cells respond to their biomechanical environment. This study will investigate how changes in the extracellular mechanical environment affects the development of neurons and the branching of dendrite -- the structure that receives signals from other nerve cells. Knowledge gained from this project will help to develop strategies that may eventually improve treatments for degenerative neural diseases or following nerve injury due to trauma. The research team will integrate students at all levels, from graduate school through high school, as well as teachers into the project. In addition, outreach will involve the development of hands-on projects and demonstrations that can introduce the public to concepts of neuroscience, imaging, and biomechanics. Two hypotheses are being investigated related to neuron growth and development within this project. The first is that local structural changes associated with applied cell forces act to transduce extracellular mechanical cues to the cytoskeleton. The second is that local changes in cellular tension in response to changes in the extracellular mechanical microenvironment act to transduce extracellular mechanical cues to the cytoskeleton. The research team will make use of a vinculin force sensor for which the tension can be measured using Forster resonance energy transfer (FRET). This mechanical measurement will be combined with fluorescence imaging of the cytoskeletal dynamics. Thus, the specific aims of this project are to: 1) demonstrate that vinculin expression changes as a function of substrate stiffness and tension; 2) demonstrate that vinculin tension is altered in response to changes in substrate stiffness and investigate the role of integrin, cadherin, and neurotransmitter receptors in mediating this response; and 3) investigate the relationship between vinculin tension, microtubule assembly, and the resulting dendritic branching.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Project Terms:
Affect; Award; Biomechanics; Cadherins; Cells; Cues; Cytoskeleton; Dendrites; Development; Disease; Engineering; Environment; Evaluation; extracellular; fluorescence imaging; Fluorescence Resonance Energy Transfer; Foundations; Growth and Development function; high school; Image; improved; Injury; Integrins; Knowledge; Measurement; Measures; Mechanics; Mediating; Microtubules; Mission; Names; Natural regeneration; Nerve; nerve injury; Neurodegenerative Disorders; neuron development; Neurons; Neurosciences; Neurotransmitter Receptor; outreach; Research; response; Role; Schools; sensor; Signal Transduction; Structure; Students; Support System; teacher; Trauma; Vinculin

Details

Contact PI / Project Leader Information:
Name:  BOUSTANY, NADA N
Other PI Information:
FIRESTEIN, BONNIE; FREEMAN, JOSEPH W; LEE, SANG-HYUK
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2018
Award Notice Date: 16-Aug-2018
DUNS Number: 001912864
Project Start Date: 01-Sep-2018
Budget Start Date:
CFDA Code: 47.041
Project End Date: 31-Aug-2021
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2018:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2018 NSF

National Science Foundation

$465,691

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top