Skip Navigation Links

Project Information

ICE-T: RC: ORCHESTRATION AND RECONFIGURATION CONTROL ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

Agency:
NSF

National Science Foundation

Project Number:
1836901
Contact PI / Project Leader:
SESKAR, IVAN
Awardee Organization:
RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK

Description

Abstract Text:
Wireless networks have grown enormously during the past 30 years, impacting numerous industries, including telecommunications, emergency response, and entertainment. Wireless advances could radically change several industries in the near future, including manufacturing, the automotive industry, healthcare, assisted living, public events, home automation, and utilities. However, each industry has different, often opposing, wireless demands. Manufacturing often requires a low data rate, ultra-low latency closed loop communication between machines, while emerging augmented reality interactions between people have much larger large data volumes, but can tolerate higher latency. Today, applications and services are constrained to a handful of wireless technologies, such as 4G, Wi-Fi and Bluetooth, because developing and modifying new radio protocols requires many man-years. The challenge for the wireless community is to enable wireless networks the same flexibility as regular computing devices, such as laptops or phones, where the same hardware supports a near infinite variety of behaviors realized in software. Flexibility at the wireless level has lagged as radios have been implemented as fixed-function circuits, in order to minimize marginal cost, energy use, and network latency. Enabling such flexibility would open opportunities for new wireless functions in diverse application domains. While the emerging field of Software-Defined Radio (SDR) has made progress toward this vision, recent results have shown that traditional SDRs suffer serious limitations. The main problem is the slower sequential execution, even when using multicore central processing units (CPUs) or graphics processing units (GPUs), in contrast to the fast execution and high parallelization in application-specific integrated circuits (ASICs)or field-programmable gate arrays (FPGAs). This research will explore and evaluate a new software abstraction, Dynamic Blocks (DB), which will realize many software abstractions in an SDR FPGA, including procedure calls, recursion, queuing, dynamic routing, shared memory and matrix algebra. Realizing these abstractions in FPGAs will allow developers to rapidly try new designs or modify existing ones while meeting real-time latency and low energy requirements. The project will use millimeter-wave (mmWave) scenarios to evaluate real-time SDRs programmed using DBs. The SDRs available in the ORBIT testbed at Rutgers University, and the future mmWave capable equipment from the recently-funded COSMOS platform and European Union partners would be the target platforms for this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Project Terms:
Algebra; Architecture; Assisted Living Facilities; Augmented Reality; Automation; Award; Behavior; Bluetooth; Communication; Communities; Computer software; cost; Data; design; Devices; Emergency response; Equipment; European Union; Evaluation; Event; flexibility; Foundations; Funding; Future; Healthcare; Home environment; Industry; laptop; man; meetings; millimeter; Mission; Names; parallelization; Procedures; programs; Protocols documentation; Radio; Research; Route; Services; shared memory; Telecommunications; Time; Universities; Vision; wireless fidelity; wireless network; Wireless Technology

Details

Contact PI / Project Leader Information:
Name:  SESKAR, IVAN
Other PI Information:
MARTIN, RICHARD P
Awardee Organization:
Name:  RUTGERS THE ST UNIV OF NJ NEW BRUNSWICK
City:  PISCATAWAY    
Country:  UNITED STATES
Congressional District:
State Code:  NJ
District:  06
Other Information:
Fiscal Year: 2018
Award Notice Date: 13-Sep-2018
DUNS Number: 001912864
Project Start Date: 01-Oct-2018
Budget Start Date:
CFDA Code: 47.070
Project End Date: 30-Sep-2021
Budget End Date:
Agency: ?

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

National Science Foundation
Project Funding Information for 2018:
Year Agency

Agency: The entity responsible for the administering of a research grant, project, or contract. This may represent a federal department, agency, or sub-agency (institute or center). Details on agencies in Federal RePORTER can be found in the FAQ page.

FY Total Cost
2018 NSF

National Science Foundation

$300,000

Results

i

It is important to recognize, and consider in any interpretation of Federal RePORTER data, that the publication and patent information cannot be associated with any particular year of a research project. The lag between research being conducted and the availability of its results in a publication or patent award varies substantially. For that reason, it's difficult, if not impossible, to associate a publication or patent with any specific year of the project. Likewise, it is not possible to associate a publication or patent with any particular supplement to a research project or a particular subproject of a multi-project grant.

ABOUT FEDERAL REPORTER RESULTS

Publications: i

Click on the column header to sort the results

PubMed = PubMed PubMed Central = PubMed Central Google Scholar = Google Scholar

Patents: i

Click on the column header to sort the results

Similar Projects

Download Adobe Acrobat Reader:Adobe Acrobat VERSION: 3.41.0 Release Notes
Back to Top